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tensor M~j has a zero eigenvalue, i.e. if the group of 
atoms being replaced is linear. 

It is, of course, necessary to make a good approxima- 
tion for the matrix W. For the method described in 
this paper a meaningful approximation is only possible 
if the chiralities of the two groups agree. For a linear 
group the solution is complete if the direction of the 
principal axis of inertia of minimum value is found 
for the atoms being replaced. With the correct choice 
of sign this corresponds to the best estimate of the 
linear direction. For non-linear groups, the alignment 
of principal inertial axes is not to be recommended 
as the choice of sign question remains and accuracy 
is very doubtful whenever two principal inertial axes 
are almost equal. The matrix W transforms three 
uniquely defined orthonormal directions in one axial 
system into equivalently defined directions in the other 
axial system. A sensible choice of three non-collinear 
atoms is used. Vector ut between atoms 1 and 2 and 
vector u2 between atoms 1 and 3 define orthonormal 
vectors v2 = u2 /N1,  v3 = Ill × v2 /N2  and vl = v2 x v3,  where 

N1 and N2 are normalization constants. We say that 

vi = Z U~A~= ~ U~kBR , 
j k 

so that 

~Vjk ~ A B = UuUIk. 
i 

U~ are direction cosines in the orthonormal axial 
system Aj defined by three of the atoms being replaced. 
U~k are direction cosines in the axial system Bk de- 
fined by the corresponding three replacement atoms. 
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A general method is developed for calculating the temperature diffuse intensity for cubic powder 
patterns. The method is applied to the pattern of an f.c.c, crystal containing 10 lz atoms. The effect 
of temperature vibration is a spreading out at the base of the peak. In terms of the integral breadth, 
there is an increase which may be of the order of several percent. But the main part of the peak is 
essentially unaltered, and the increase does not relate to what is generally measured as a breadth. 
The usual observation is better represented by the breadth at half maximum intensity, and for this 
quantity there is an increase of less than 0.07% for 2M= 1.0 and less than 0.17% for 2M=2.0. It is 
concluded that a real temperature broadening of powder pattern peaks will always be too small to 
be of importance, or to be experimentally observable. 

1. Introduction 

For crystals containing only one kind of atom, the 
early Debye approximation, involving independent 
vibration of the atoms, predicted a reduction in the in- 
tensity of the Bragg reflections by the factor 
exp ( - 2 M ) ,  and the appearance of a monotonic dif- 
fuse intensity equal to leNf2[1-exp ( - 2 M ) ] .  There 
was no broadening of a powder pattern reflection, only 
a reduction in height. 

A better approximation represents the atomic vibra- 
tions in terms of a system of elastic waves. The first- 
order temperature diffuse intensity (TDS) for an f.c.c. 
powder pattern has been evaluated on the basis of the 
elastic wave model (Warren, 1953) and the contribu- 

tion by second-order TDS has been given by Paskin 
(1958). It is found that the TDS averages closely to 
the old independent vibration result, but at the posi- 
tion of each of the Bragg reflections, the TDS rises 
sharply, and the Bragg reflections are superimposed 
on these peaks in the diffuse intensity. The elastic wave 
treatment predicts that the temperature vibration of 
the atoms should produce a broadening in the peaks 
occurring at the Bragg positions. 

However the previous treatment is not satisfactory 
for predicting the magnitude of the broadening. At the 
position of each of the Bragg reflections, the TDS rises 
to infinite values. This unrealistic result came from an 
integration in the Brillouin zone over the elastic wave 
vectors g, including all wave vectors down to g = 0 .  
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But g = 0 corresponds to elastic waves of infinite wave- 
length, and the existence of such waves requires that 
the crystal be of infinite size. A treatment restricted to 
crystals of infinite size is not satisfactory for discussing 
the broadening of reflections, and we look for a more 
general approach, applicable to crystals of any size. 

2. Intensity theory 

We consider an f.c.c, crystal with four atoms in the 
cubic cell. The crystals are assumed to be spherical 
with N atoms per crystal, and there are W crystals in 
the powder sample. To avoid including a structure 
factor, we start out using the rhombohedral axes which 
define a unit cell containing only one atom. Allowing 
for thermal vibrations, the intensity from one crystal 
is given by equation (11.16) of Warren (1969): 

I=Ief  2 ~ ~ exp [2zci(S/2). rmn ] exp [ -  (P,Z,,)/2]. 
m n 

From equation (11.14) 

(PZm,)= 16zc2(sin O/2)2 ( (Ums -- U,s) z) 

where Urn, is the component of displacement of atom 
m along the diffraction vector S. An expression for the 
average ((u,,s-u,s) 2) is given on p. 205 of Warren 
(1969) 

((urns- U,s)2) = 2(u 2) [1 - Si(2rcgmrm,)/2rcgmrm,l 

where gm is the radius of the sphere of equal volume 
which replaces the Brillouin zone, and the approxima- 
tion has been made that all elastic waves have the same 
velocity. The Debye temperature factor is given by 

2 M =  16rc2(u]) (sin 0/2) 2. 

Combining these equations, we express the effect of 
temperature vibration on the intensity from one crystal. 

I=Ief  2 ~ ~, exp [2zri(S/2). rm,] 
m n 

Let q be a vector in reciprocal space, directed to the 
position of measurement from the nearest hkl point 

S/2 = hbl + kb2 + lba + q • 

It follows that 

exp [2rci(S/2). rm,] =exp  (2~iq. rm,) 
= exp (2rciqrm,, cos co). 

It is now possible to replace the double sum in equa- 
tion (1) by an integration in which rm,, is replaced by 
the continuous variable r. In the spherical crystal there 
are displacements of magnitude r in all orientations 
relative to q, and we can first average over all orienta- 
tions. 

sin (2rcqr) (2) 
(exp (2rciqr cos qg)) . . . .  2rcqr 

By adding and subtracting exp ( - 2 M ) ,  equation (1) 
is conveniently divided into a Bragg intensity 1B, and 
a diffuse intensity Io 

IB(q)=Ief2e-ZM ,~n ~,, sin (2rcqr) 
21rqr (3) 

I°(q)=IefEe-ZM ~m ~. V(r) Sinzrcqr(Zrcqr) (4) 

where 
V(r) = exp [2MSi(2z~gmr)/2rcgmr]- 1 . 

3. The diffuse intensity 

In using equation (4) for the diffuse intensity in an 
hkl zone, we neglect the small variation in 2M and use 
a constant value appropriate to the zone center. Fig. 1 
shows a sphere of radius R which cuts the hkl Brillouin 
sphere. The powder pattern intensity for R = 2 sin 0/2 
is obtained by integrating l(q) over that part of the 
surface of the sphere of radius R which is within the 
Brillouin sphere, adding the contributions from all 
zones which are cut by the sphere of radius R, divid- 
ing by 4zcR 2, and multiplying by W the number of crys- 
tals in the sample. With p(hkl) as the cubic multiplicity 

I ( R ) -  W Ii~oi(q)2rcR z 4~zR 2 ~ p(hkl) sin ctd~ . 
hkl 

From here on, we shall be using cubic axes with a 
the edge of the cubic unit cell. From Fig. 1, 

• q2 = R 2 + RZkt _ 2RRhkt COS 0e 
and hence 

RRhk~ sin c~dc~ = qdq. 

The new limits are q=R-R~k~ and q=gm. Introducing 
the notation X=aR=2a sin 0/2, Xnk~=aRhkt, and e=  

x o ( x )  = 
Wlef2e -2M p(hkl) 

8~2X ~" X,,k~ hkl 

x ~ V ( r ) [ C ° S 2 r c e r / a - c ° s 2 ~ r g m  r] 
m , (r/a) z " 

(5) 

R R  

Fig. 1. Construction for obtaining the contribution from the 
zone hkl to the powder pattern intensity at R = 2 sin 0]2. 
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The volume of the Brillouin zone is the reciprocal 
of the volume per atom 

4n 4 
3 g3m- a 3 ' ag, ,=0.985,  7= 2ng,,a= 6.19 . 

We now replace the double sum by an integral. For a 
spherical crystal of radius Q containing N atoms, the 
number of terms corresponding to pairs of atoms with 
separation between r and r +  dr is 

where 

4 
n(r )dr = NG(r ) ~ 4nrZdr 

3r r 3 
6 ( r )  = l -  + i-60 

The integration is from r = 0  to r=20, and 0 is deter- 
mined by 

3 " 

It is convenient to introduce a dimensionless variable 
with the following changes 

3u u 3 
r/a=u,  Q/a=U, G ( u ) = l - ~ +  16U -----y '  

V(u)=exp [2msi(7,u)/y,u]- 1 . 

With these changes equation (5) becomes 

Io(X)= WUI~fZe -aM 2 p(hkl) 

Ii~oG(U) V(u) x [cos 2neu-cos ~u]du. (6) 

To evaluate the integral in equation (6), we divide 
it into two parts. For u > 5, Si(y, u)/y, u is well approx- 
imated by n/2y, u, the exponential in V(u) can be ex- 
panded, and we can write V(u)= nM/?u. 

Ii~oG(U) V(u) cos 2neudu= Y(e)= Yl(e) + Y2(e) 

where 

I' 0 Yl(e) = u)V(u) cos 2neudu, 
U =  

1 -  + . Y2(~)= ~ u=, TO- ! u 

The first integral Y~(e) is readily evaluated numerically. 
The integral Yz(e) can be expressed in terms of tabu- 
lated functions such as Ci(z) and sin z/z. Discarding 
terms in 1/U 3 and restricting to values of e for which 
e>(1/U) 

15 sin 2he5 nM _Ci(2ne5 ) + 
Yz(e)= --~-- , 4U 2he5 

sin 4neU] 
- j "  

In equation (6), the contribution from the term cos 7u 
is small. Neglecting this term, the contribution to the 
powder pattern diffuse intensity from the zone hkl is 
given by 

Io(e)= WUI~f2e -2M p(hkl) Y(e) . (7) 
XXhk~ n 

4. Intensity distribution in the Bragg reflections 

The Bragg intensity from one crystal is given by equa- 
tion (3). It is identical to the Io(q) of equation (4) if 
we set V(r)= 1. The powder pattern intensity distri- 
bution in a Bragg reflection is obtained by following 
the same procedure used in obtaining equations (5) 
and (6). By setting V(u)= 1 in equation (6) and making 
the approximation X=Xhk~ we obtain 

ln(e)= WNIdZe -zM p(hkl) 
XLz 

2f2u × --- G(u) [cos 2mu-cos  7u]du . 
u = 0  

The contribution from the term cos 7u is small enough 
to neglect. With an integration by parts, the powder 
pattern intensity distribution in a Bragg reflection is 
given by 

In(e)= WNIefZe -2M p(hkl) 3U Z(2neU) (8) 
X~kl 2n 

where 

Z ( t ) = 1 2 . [ l +  ( ~ _ )  z 2 s i n 2 t ]  
2t 

The function Z(t)  has the properties 

Z(O)= 1, Z(t )d t=2n/3 .  
0 

(9) 

5. Peak broadening by temperature vibration 

To compare the diffuse intensity related to an hkl 
Brillouin zone, with the intensity in the same hkl Bragg 
reflection, it is convenient to introduce reduced inten- 
sities l"D(e) and l'B(e). For l'o(e) we make the approx- 
imation X =  Xhkz. 

Io(e)X~kt =e-aM 2_ Y(e), (10) 
I~(e) = WNiefZp(hkl) n 

Ia(e)XZhkt =e_2M 3___U_U Z(2neU). (11) 
I~(e) = WNiefZp(hkl) 2n 

The broadening of the reflection at a Bragg position 
by inclusion of the diffuse intensity is illustrated by a 
numerical example. We choose the values 2 M =  1.0 and 
N =  10 ~2 from which U=3910. Fig. 2 shows the Bragg 
intensity I'B(e), the diffuse intensity I~(e), and the sum 
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I'B(e)+I'D(e). The major effect of adding I~(e), is to 
spread out the base of the Bragg peak. For this un- 
usual kind of broadening, it makes a difference whether 
we discuss the broadening in terms of the integral 
breadth or the half maximum intensity breadth. 

We first consider the broadening in terms of the 
integral breadth ft. Calling As the area of the I'B(e) 
peak, 

! +~I I oo z (2n Ue)de As= ,B(e)de=e_2M 3U +oo = __1 e_2M" 
_ 2 n  _ n 

On an e scale, the integral breadth of the l'n(e) peak is 

fls=An/I'B(O)=2/3U. 

Suppose that areas are measured above a background 
line which cuts through the curve I'n(e) + I;(e) of Fig. 2 
at e= _+ r/. The area contributed by the diffuse inten- 
sity 1;(e) is 

where 

Ao(r/)= --4 e_ZMTOI) 

T(~)= II Y(Ode-~T(~) . 

Let fl'(q) be the integral breadth of that part of I'8(e) + 
I'D(e) above the background level 

A8 + AD(q) 
f l ' ( r / )  = I ~ (0 )  + I ~ ( 0 )  - I~ ( r / )  

1 +4T(r/) 
(3U/2) {1 +(4/3U) [Y(O)- Y(r/)]} " 

(12) 

to consider this as truly representative of a peak 
broadening. 

The breadth at half maximum intensity probably 
represents more closely the quantity observed when 
comparing peak breadths, and we now consider this 
kind of breadth. For 2 M =  1.0, the curves of interest 
are those of Fig. 2. For the Bragg reflection alone, at 
half maximum intensity, e=7.0 x 10 -5 and dI'B(e)/de= 
- 6 7  x 10 s. The value of l'D(e) decreases very little in 
a range of e several times that corresponding to the 
half maximum breadth of I~(e), and in this range of 
e, the curve l'8(e)+I;(e) is essentially just I'e(e) raised 
by I~(0)=0.68. If the background level is taken at the 
zero ordinate of Fig. 2, the half maximum breadth of 
I'B(e) +l'D(e) will be that of the half maximum position 
on I'B(e) lowered by 0.68/2=0.34. The increase in e is 
given by 0.34 (67 x 105)=0.0050 x 10 -5, and the frac- 
tional increase in breadth is Ae/e=O.O050×lO-5/ 
(7.0 x 10-5)=0.0007. For the extreme case, where the 
background is taken at the zero level of Fig. 2, the in- 
crease is 0.07%. A similar calculation for 2M=2.0  
gives an upper limit of 0.17% for the increase in 
breadth. Since the background level will always be 
taken well above the zero level of Fig. 2, the increase 
in the half maximum intensity breadth will be less than 
the upper limit values of 0.07 and 0.17 % which have 
been computed. In practice the peak will be broadened 
by a convolution with the various sources of instru- 
mental broadening, and this will further decrease the 
observable broadening by temperature vibration. 

In terms of the integral breadth, the temperature 
vibration of the atoms produces an increase in peak 

The broadening produced by temperature vibra- 
tion is conveniently represented by the ratio fl'(q)/flB. 
Calling this ratio c~, we have 

fl'(r/) 1 + 4T(r/) 
~ -  ~ n  - 1 + ( 4 / 3 U ) [ Y ( 0 ) -  Y(r/)] " (13) 

Values of the ratio are given in Table 1, for various 
values of 2M and r/. 

Table 1. Values of oc for N= 1012 

r/= 0'01 r/= 0.02 ~/= 0.05 
2 M =  1"0 1"010 1'020 1"052 
2M--  2"0 1"021 1"042 1"107 

In terms of the integral breadth, the temperature 
vibration of the atoms has produced an increase in 
peak breadth which amounts to several percent. How- 
ever this increase is due to inclusion of the area in- 
crease resulting from the spreading out at the base of 
the peak. The main part of the peak is essentially un- 
altered, and it is questionable whether it is realistic 
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0.5 
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/ \  
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• 008  .004 .000  .004 .008 

Fig. 2. Contr ibut ions  to a Bragg peak for N =  1012 and 2M--  1-0. 
A is the Bragg peak I'a(e), B is the diffuse intensity fo(~), C 
is the sum I'B(O + I'D(O. 
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breadth which may amount to several percent. How- 
ever this is an increase which results from a spreading 
out at the base of peak, it is not the kind of increase 
in breadth which we normally look for in comparing 
two peaks. ,The breadth at half maximum intensity 
represents more closely the quantity which is used in 
practice. Although there is a small increase in this 
kind of breadth, the magnitude is too small to be of 
importance or to be experimentally observable. 

I am indebted to Dr B. D. Cullity for a preliminary 
discussion of powder pattern broadening by tempera- 
ture vibration. 
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A summary is given of some work which has been performed to identify those special points, lines, 
and planes of symmetry that have been omitted from published tables of irreducible representations 
of space groups. In order to have a complete set of all the irreducible representations of every space 
group, it is necessary to determine the irreducible representations for these additional wave vectors 
in order to supplement the existing published sets of tables. The generation of these supplementary 
tables is reported. 

1. Introduction 

The irreducible representations of space groups have 
been used for many years for labelling the electronic 
band structures of crystalline solids. More recently, 
their use has been extended to labelling phonon dis- 
persion relations and the energy eigenstates for other 
particles or quasi-particles. In addition to providing 
a useful scheme for labelling energy bands or disper- 
sion relations, the irreducible representations of the 
space groups can also be used to predict essential 
degeneracies, to simplify the calculation of electronic 
band structures or of phonon dispersion relations, and 
in the determination of selection rules for processes in- 
volving electrons or phonons in crystalline solids; for 
details see, for example, Cracknell (1974, 1975). 

Tables of irreducible representations were first 
published for three important symmorphic space 
groups, Pm3m(O~), Fm3m(OSh), and lm3m(O 9) by Bou- 
ckaert, Smoluchowski & Wigner (1936) and for two 
of the more important non-symmorphic space groups, 
P6Jmmc(D4h) and Fd3m(07), by Herring (1942). Since 
then, many papers have been published giving tables 
of the irreducible representations of various selections 
of space groups. During the last few years there have 
been several systematic attempts to publish complete 
sets of tables of irreducible representations for all the 

* On leave from: Carnegie Laboratory of Physics, Univer- 
sity of Dundee, Dundee DD1 4HN, Scotland. 

230 classical space groups (Faddeyev, 1964; Kovalev, 
1965; Miller & Love, 1967; Zak, Casher, GliJck & 
Gur, 1969; Bradley & Cracknell, 1972). Some recent 
work which we have been doing, in connexion with 
the reduction of Kronecker products of space-group 
representations, has made us realize that each of these 
published sets of tables contains some deficiencies. We 
shall concern ourselves primarily with the tables of 
Miller & Love (1967), which we shall refer to hereafter 
as M & L, because they are the most explicit tables 
and also, being computer-generated, they are in the 
most convenient form for use in further computer- 
based calculations. 

The points that we wish to make concern (i) the 
completeness of the identification of special points and 
lines of symmetry, without restrictions being imposed 
on the axial ratios for certain space groups (see § 2), 
(ii) the systematic identification of planes of symmetry 
in all space groups (see § 3), and (iii) the determination 
of the irreducible representations for all distinct wave 
vectors in the 'representation domain',  q~, which for 
many space groups is larger than the 'basic domain',  g2. 

In the space available in this journal we shall only 
be able to summarize our work on these topics. There 
are, inevitably, a considerable number of new diagrams 
and tables that we have had to construct but which 
cannot be included here.* 

* The diagrams and tables are all included in a paper. 
On the completeness of tables of irreducible representations o.( 
the classical space groups (Davies & Cracknell, 1976). 


